Ενημέρωση για COVID-19 από το Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (25/5/2020)

Η πρωτοβουλία του Ηνωμένου Βασιλείου για την αλληλούχηση 35.000 γονιδιωμάτων ασθενών με COVID-19 προκειμένου να συσχετισθούν το γενετικό υποβαθρο των ασθενών με τη βαρύτητα της νόσου

Η κοινοπραξία Genomics England και η GenOMICC (Genetics of Mortality in Critical Care) προωθούν μια πρωτοβουλία για τον προσδιορισμό της αλληλουχίας του γονιδιώματος δεκάδων χιλιάδων ασθενών με COVID-19 στο Ηνωμένο Βασίλειο. Η πρωτοβουλία αυτή στοχεύει στην κατανόηση της επίδρασης των γονιδίων ενός ασθενή στην αντίδραση στον ιό και κατ΄ επέκταση στην εξέλιξη της βαρύτητας της νόσου. Ειδικότερα, οι ερευνητές θα χρησιμοποιήσουν τα δεδομένα ώστε να κατανοήσουν τον ρόλο του γενετικού προφίλ στο εάν ένας ασθενής είναι πιθανό να εμφανίσει μόνο ήπια συμπτώματα ή αν κινδυνεύει να εμφανίσει σοβαρή νόσο COVID-19, ανεξάρτητα από άλλους γνωστούς παράγοντες κινδύνου. Οι Καθηγητές του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, Ανδρέας Σκορίλας, Ευστάθιος Καστρίτης, Ιωάννης Τρουγκάκος και Θάνος Δημόπουλος (Πρύτανης ΕΚΠΑ), συνοψίζουν τα δεδομένα.

Οι τεχνολογίες αλληλούχησης νέας γενιάς (Next-Generation Sequencing, NGS) έχουν αλλάξει δραματικά́ το πεδίο της μοριακής διαγνωστικής και γονιδιωματικής, επιτρέποντας τον ακριβή προσδιορισμό της αλληλουχίας γονιδιωμάτων και μεταγραφωμάτων οργανισμών με υψηλή ακρίβεια και με ταχύτητες που δεν είχαν υπάρξει στο παρελθόν. Τα τελευταία χρόνια, η βελτιστοποίηση των εργαστηριακών πρωτοκόλλων, η κατάλληλη κατάρτιση του εργαστηριακού προσωπικού και η ανάπτυξη βιοπληροφορικών εργαλείων για τη διαχείρηση και την ερμηνεία των πολύπλοκων και τεράστιων δεδομένων που παράγονται, έχουν καταστήσει την τεχνολογία NGS το κυρίαρχο εργαλείο για τη μελέτη των γονιδιωμάτων.

Αναμφισβήτητα, η βασικότερη εφαρμογή της τεχνολογίας NGS είναι η αλληλούχηση ολόκληρων γονιδιωμάτων (Whole Genome Sequencing, WGS). Η εφαρμογή WGS έχει αλλάξει ριζικά την κατανόηση των σχέσεων μεταξύ της γονιδιωματικής ποικιλομορφίας και των φαινοτύπων, αλλά έχει συμβάλει και τα μέγιστα στην κλινική διάγνωση, ιδιαίτερα στις περιπτώσεις των γενετικών ασθενειών. Το WGS παρέχει τη δυνατότητα για ταυτόχρονο και πλήρη διαγνωστικό έλεγχο πιθανών μονογονιδιακών παθήσεων, επιταχύνοντας, με τον τρόπο αυτό, την μοριακή διάγνωση και ελαχιστοποιώντας τη διάρκεια εφαρμογής εμπειρικής αγωγής. Αξίζει ωστόσο να σημειωθεί πως μια από τις πιο σημαντικές κλινικές εφαρμογές του WGS αποτελεί η αλληλούχηση παθογόνων στελεχών μικροοργανισμών, η μελέτη της επιδημιολογίας τους και η παρακολούθηση μολυσματικών ασθενειών σε επίπεδο πληθυσμού.

Επιπλέον, μια σύγχρονη και πολύ βασική εφαρμογή του NGS, η αλληλούχηση των εξωνίων του γονιδιώματος (Whole Exome Sequencing, WES), έχει εξελίξει τη βιοϊατρική έρευνα επεκτείνοντας τα αποτελέσματα και τις εφαρμογές στην κλινική διάγνωση και πρόγνωση. Με τη χρήση του WES είναι πλέον εφικτός ο προσδιορισμός των επιπέδων έκφρασης των ανθρώπινων γονιδίων σε φυσιολογικές ή παθολογικές καταστάσεις, με αποτέλεσμα την απόκτηση ενός αναλυτικού γονιδιακού προφίλ έκφρασης, το οποίο μπορεί να χρησιμοποιηθεί τόσο για την κατηγοριοποίηση των ασθενών σε ομάδες επικινδυνότητας, όσο και για τη μελέτη φαρμακογενετικών παραλλαγών που μπορεί́ να επηρεάσουν την ανταπόκριση ενός ατόμου σε κάποιο φαρμακευτικό παράγοντα.

Όσον αφορά τη συγκεκριμένη μελέτη, θα ενταχθούν αρχικά 20.000 άτομα που νοσηλεύονται -ή νοσηλεύτηκαν- σε ΜΕΘ με σοβαρή νόσο COVID-19, καθώς και 15.000 άτομα που εμφάνισαν μόνο ήπια συμπτώματα της νόσου. Ο απώτερος στόχος είναι να αλληλουχηθεί το γονιδίωμα κάθε ασθενή με COVID-19 που βρίσκεται σε ΜΕΘ σε ολόκληρο το ΕΣΥ του Ηνωμένου Βασιλείου και να πραγματοποιηθεί μια συγκριτική γονιδωματική μελέτη (Genome-Wide Association Study, GWAS) που θα επιτρέψει την σύγκριση των γονιδιωμάτων των ασθενών που εμφανίζουν ήπια συμπτώματα με εκείνους που εμφανίζουν πιο σοβαρά. Παρόλο που δεν είναι δυνατό να προβλεφθεί τι θα δείξουν τα δεδομένα, αυτά θα μπορούσαν να χρησιμοποιηθούν στη διαστρωμάτωση των ασθενών για μελλοντικές κλινικές δοκιμές νέων θεραπειών και εμβολίων έναντι του COVID-19. Επίσης η μελέτη αυτή θα μπορούσε να βοηθήσει στον προσδιορισμό του κατά πόσον ορισμένα φάρμακα μπορεί να έχουν περισσότερο ή λιγότερο όφελος σε ασθενείς με συγκεκριμένα γονιδιακά προφίλ. Επιπρόσθετα, τα δεδομένα που θα αποκτηθούν από την αλληλούχηση των ασθενών θα μπορούσαν να αποδειχθούν ιδιαίτερα σημαντικά για την μελέτη της αλληλεπίδρασης του ιού SARS-CoV-2 με νευρικά κύτταρα του ανθρώπου και τις επιπτώσεις της δράσης του στον εγκέφαλο. Σύμφωνα με πρόσφατες επιστημονικές έρευνες, έχει διαπιστωθεί ότι ο SARS-CoV-2 μπορεί να προσβάλει το κεντρικό νευρικό σύστημα με ποικίλους τρόπους, ενώ ένα ποσοστό σοβαρά νοσούντων εμφανίζει νευρολογικά προβλήματα. Παράλληλα, ιδιαίτερο ενδιαφέρον αναμένεται να έχουν τα αποτελέσματα της αλληλούχησης όσον αφορά τη μελέτη της μοριακής εξέλιξης του ιού στον αγγλικό πληθυσμό και τη συσχέτιση μεταλλάξεων ή πολυμορφισμών με τη βαρύτητα της νόσου, εντοπίζοντας με αυτόν τον τρόπο τα στελέχη υψηλής παθογένειας.

Μακροπρόθεσμα, τα δεδομένα θα μπορούσαν επίσης να βοηθήσουν στον εξατομικευμένο σχεδιασμό εμβολίων, εάν π.χ. βρεθεί ότι το γονιδιώμα μπορεί να επηρεάσει την ανταπόκριση σε ένα εμβόλιο. Η κοινοπραξία έχει ήδη συλλέξει δείγματα DNA από 2.000 ασθενείς που νοσηλεύονται σε ΜΕΘ λόγω COVID-19. Θα πραγματοποιηθεί μια αρχική ανάλυση σε μικρό σχετικά αριθμό ασθενών και κατόπιν οι αναλύσεις θα επαναλαμβάνονται καθώς θα αυξάνονται οι αριθμοί των γονιδιωμάτων ασθενών που θα εντάσσονται στην μελέτη. Η μελέτη θα καθιερώσει ένα είδος «δημόσιου παρατηρητηρίου», όπου θα υπάρχει ευρεία πρόσβαση σε ερευνητές στα συνοπτικά δεδομένα. Επίσης, τα δεδομένα από την ανάλυση του γονιδίωματος ενός ατόμου θα συνδεθούν με δεδομένα από την ανάλυση του γονιδιώματος του ιού. Αυτά θα παρέχονται μέσω του προγράμματος αλληλούχησης του γονδιώματος του ιού από την κοινοπραξία COVID-19 Genomics UK (COG-UK), που έχει ήδη αλληλουχήσει πάνω από 10.000 γονιδιώματα ιών από ασθενείς με COVID-19. Η σύνδεση αυτών των δεδομένων με τα δεδομένα του γονιδιώματος των ασθενών μπορεί να παρέχει μοναδικές πληροφορίες σχετικά με το πώς τα γονιδιώματα του ασθενούς και του ιού αλληλεπιδρούν και επηρεάζουν την ανταπόκριση στη λοίμωξη. Η πρωτοβουλία αυτή στο Ηνωμένο Βασίλειο είναι η μεγαλύτερη του είδους. Το έργο υποστηρίζεται με 28 εκατομμύρια λίρες από τη Genomics England και διάφορες Υπηρεσίες Έρευνας και Υγείας του Ηνωμένου Βασιλείου. Ένα ανάλογο παράδειγμα δημοσιεύθηκε πρόσφατα το ιατρικό περιοδικό Journal of Virοlogy και αφορά στα αντιγόνα των λευκοκυττάρων HLA (Human Leucocyte Antigens). Τα HLA είναι πρωτεΐνες που κωδικοποιούνται από ένα διαφορετικό σύνολο ανθρώπινων γονιδίων στην περιοχή του μείζονος σύμπλεγματος ιστοσυμβατότητας. Οι περισσότεροι άνθρωποι φέρουν μεταξύ τριών και έξι διαφορετικών αλληλόμορφων HLA (δηλαδή παραλλαγών του ίδιου γονιδίου) με γεωγραφική και φυλετική κατανομή. Αυτές οι πρωτεΐνες του συμπλέγματος ιστοσυμβατότητας είναι σημαντικές τόσο για τον τρόπο με τον οποίο το ανοσοποιητικό σύστημα αναγνωρίζει ξένα αντιγόνα (π.χ. ιούς και μικρόβια) όσο και για το πως ανταποκρίνεται και κινητοποιείται έναντι μολύνσεων από ιούς και μικρόβια. Τα μόρια HLA «παρουσιάζουν» σε ορισμένα κύτταρα του ανοσοποιητικού τα διάφορα αντιγόνα (π.χ. ιών ή βακτηρίων) ώστε να ξεκινήσει η ανοσολογική αντίδραση. Τα HLA έχουν επίσης τεράστια σημασία στις μεταμοσχεύσεις οργάνων και μυελού των οστών, καθώς απαιτείται συμβατότητα σε αυτά (δηλαδή να είναι ίδια ή έστω παρόμοια μεταξύ δότη και λήπτη) ώστε να μην απορρίπτεται το μόσχευμα.

Ερευνητές από τις ΗΠΑ εξέτασαν πώς οι διάφορες παραλλαγές των HLA επηρεάζουν την κυτταρική ανοσολογική απόκριση σε πεπτίδια (κομμάτια πρωτεΐνης) από κορωναϊούς που μολύνουν τον άνθρωπο. Οι ερευνητές διαπίστωσαν ότι το HLA-B*46:01 είχε τις λιγότερες προβλεπόμενες θέσεις σύνδεσης με τον SARS-CoV-2, ενώ το HLA-B*15:03 έδειξε τη μεγαλύτερη ικανότητα παρουσίασης των πεπτιδίων του SARS-CoV-2 σε κύτταρα του ανοσοποιητικού. Η τυποποίηση των HLA (δηλαδή ο ακριβής προσδιορισμός του υποτύπου για κάθε διαφορετικό μόριο HLA σε κάθε άτομο) θα μπορούσε να προσφέρει πολύτιμες πληροφορίες σχετικά με το πώς μπορεί να εκδηλωθεί η νόσος COVID-19 στο άτομο αυτό και να βοηθήσει στην ιεράρχηση των θεραπευτικών επιλογών, όπως π.χ. της πρώιμης έναρξης μιας πιο ειδικής θεραπείας εάν ο κίνδυνος είναι υψηλός, και πριν τα συμπτώματα γίνουν σοβαρά.

 

Η στρατηγική για την ταχεία ανάπτυξη φαρμάκων εναντίον του SARS-CoV-2

Αν και οι περισσότεροι ασθενείς με νόσο COVID-19 αναρρώνουν εντός 1 έως 3 εβδομάδων, ένα ποσοστό αναπτύσσει σοβαρή νόσο. Επί του παρόντος διαθέτουμε σχεδόν μόνο υποστηρικτικές και όχι ειδικές αντιϊκές θεραπείες που οι ασθενείς χρειάζονται άμεσα. Μία προσέγγιση για την ταχεία ανάπτυξη νέων θεραπειών είναι η χρησιμοποίηση ήδη εγκεκριμένων φαρμάκων που έχουν αναπτυχθεί για άλλες χρήσεις, ως θεραπείες για την COVID-19 (repurposing of drugs). Αυτή η στρατηγική εκμεταλλεύεται τα υπάρχοντα δεδομένα σχετικά με τη φαρμακολογία και την τοξικότητα στον άνθρωπο αυτών των φαρμάκων και μπορεί να επιταχύνει τις κλινικές δοκιμές και τον κανονιστικό έλεγχο. Οι Καθηγητές του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών Ευστάθιος Καστρίτης και Θάνος Δημόπουλος (Πρύτανης ΕΚΠΑ), συνοψίζουν τα δεδομένα.

Οι κορωνοϊοί

Με την εμφάνιση του SARS-CoV-2, υπάρχουν πλέον επτά κορωνοϊοί που είναι γνωστό ότι μολύνουν τον άνθρωπο. Τέσσερις από αυτούς (HCoV-229E, HCoV-OC43, HCoV-NL63 και HCoV-HKU1) ευθύνονται για περίπου 30% των περιπτώσεων κοινού κρυολογήματος στους ανθρώπους. Δύο από αυτούς ο SARS-CoV-1 και ο MERS-CoV προκάλεσαν επίσης πρόσφατες επιδημίες με σημαντική θνησιμότητα. Oι δύο επιδημίες (SARS & MERS)  επηρέασαν έναν μικρό αριθμό ασθενών σε σύγκριση με τον COVID-19, ο οποίος είναι πιο μεταδοτικός. Καθώς πριν από τον COVID-19, μόνο ο SARS-CoV-1 και ο MERS-CoV προκάλεσαν σοβαρή ασθένεια, δεν είχε δοθεί βαρύτητα στην ανακάλυψη φαρμάκων έναντι των κορωνοϊών, αντίθετα π.χ. με την προσπάθεια για άλλες ιογενείς λοιμώξεις όπως η γρίπη. Ο κύκλος ζωής του κορωνοϊού περιλαμβάνει μια σειρά από στάδια τα οποία δυνητικά θα μπορούσαν να αποτελέσουν στόχο για θεραπεία. Οι ιοί δεν μπορούν να αναπαραχθούν από μόνοι τους και πρέπει να εισέλθουν σε κύτταρα για να μπορέσουν να πολλαπλασιαστούν, χρησιμοποιώντας τους μηχανισμούς του κυττάρου-στόχου. Αυτή η διαδικασία γίνεται σε στάδια. Εκτός από τους στόχους όμως που κωδικοποιεί ο ιός, υπάρχουν και πολλοί στόχοι μέσα στο κύτταρο-ξενιστή που  είναι απαραίτητοι για την αντιγραφή του ιού και την πρόοδο της νόσου.

Οι πιθανοί στόχοι και οι θεραπείες

Ο κυτταρικός υποδοχέας για τον SARS-CoV-2 είναι το ένζυμο ACE2 που βρίσκεται στην επιφάνεια του κυττάρου (κυρίως σε κύτταρα στην μύτη και στον πνεύμονα). Έχει αναπτυχθεί ανασυνδυασμένο ανθρώπινο ένζυμο ACE2 (ονομάζεται rhACE2 ή APN01) που βρίσκεται υπό διερεύνηση ως θεραπεία για οξεία πνευμονική βλάβη και πνευμονική αρτηριακή υπέρταση. Αυτή η θεραπεία φαίνεται να είναι καλά ανεκτή σε μια δοκιμή φάσης 1 σε υγιείς εθελοντές. Το rhACE2 ότι μειώνει σημαντικά και την είσοδο ιού SARS-CoV-2 σε οργανοειδή που προέρχονται από ανθρώπινα κύτταρα, πιθανώς ενεργώντας ως «δόλωμα» για τη σύνδεση του ιού. Έτσι, κλινικές δοκιμές διερευνούν τον αποκλεισμό της εισόδου του ιού με την χορήγηση του rhACE2 σε ασθενείς με COVID-19.

Η επιτυχής είσοδος του ιού στα κύτταρα απαιτεί τη σύνδεση της πρωτεΐνης-ακίδας του ιού με τον υποδοχέα ACE2. Αυτό απαιτεί την «ενεργοποίηση» της πρωτεΐνης-ακίδας (ουσιαστικά αποκόπτεται ένα κομμάτι της) η οποία γίνεται από το ένζυμο TMPRSS2, που επίσης βρίσκεται στην επιφάνεια των κυττάρων (συχνά μαζί και με τον ACE2).  Το φάρμακο camostat  αναστέλλει το ένζυμο TMPRSS2 και έχει εγκριθεί στην Ιαπωνία για τη θεραπεία της χρόνιας παγκρεατίτιδας και της μετεγχειρητικής γαστρικής παλινδρόμησης. Τόσο το camostat όσο και το συγγενικό nafamostat, φαίνεται ότι μπορούν να σταματήσουν την αντιγραφή του SARS-CoV-2 σε ανθρώπινα κύτταρα που εκφράζουν το ένζυμο TMPRSS2. Το Camostat έχει αποδειχθεί ότι εμποδίζει τη μόλυνση με SARS-CoV-2 σε ένα μοντέλο ποντικιού. Έτσι έχουν ξεκινήσει σχετικές κλινικές δοκιμές στην Ολλανδία και τη Γερμανία.

Οι κορωνοϊοί χρησιμοποιούν τα ενδοσώματα για να εισέλθουν στο κύτταρο (αφού συνδεθούν με τον υποδοχέα ACE2). Η χλωροκίνη και η υδροξυχλωροκίνη είναι γνωστά και παλιά ανθελονοσιακά φάρμακα που επηρεάζουν τη λειτουργία των ενδοσωμάτων. Και τα δύο φάρμακα έχουν δείξει ότι αναστέλλουν την αντιγραφή του SARS-CoV-2 στο εργαστήριο. Η αζιθρομυκίνη είναι ευρέως χρησιμοποιούμενο αντιβιοτικό και  μπλοκάρει επίσης την κάθαρση των αυτοφαγοσωμάτων στα ανθρώπινα κύτταρα. Στο εργαστήριο,  μπλοκάρει επίσης την αντιγραφή του ιού Zika και του ιού της γρίπης. Αν και τα προκαταρκτικά αποτελέσματα από μικρές δοκιμές με  υδροξυχλωροκίνη σε ασθενείς με COVID-19 έδειξαν κάποια ενθαρρυντικά αποτελέσματα δεν υπάρχουν αποδείξεις αποτελεσματικότητας, ενώ υπάρχει κίνδυνος τοξικότητας (π.χ καρδιακές αρρυθμίες). Πολύ πρόσφατα δημοσιεύθηκε στο περιοδικό Lancet μια μετα-ανάλυση που δείχνει ότι πιθανόν η χρήση της αυξάνει τελικά την θνητότητα.

Μετά την είσοδο του ιού, αυτός απελευθερώνει το γενετικό του υλικό (το RNA του) μέσα στο κύτταρο, όπου χρησιμοποιείται για την μετάφραση και την παραγωγή των πρωτεϊνών του. Αυτή η διαδικασία εξαρτάται και από μια πρωτεΐνη του ιού που ονομάζεται RdRp και δύο άλλες που ανήκουν στις λεγόμενες πρωτεάσες. Υπάρχουν πολλά αντιιϊκά φάρμακα που δρουν στις πρωτεάσες του  HIV και άλλων ιών. Όμως οι πρωτεάσες του SARS-CoV-2 διαφέρουν αρκετά. Ο συνδυασμός των αναστολέων της πρωτεάσης του HIV, λοπιναβίρης και ριτοναβίρης, αποδείχθηκε αναποτελεσματικός για τη νόσο COVID-19. Η επαναχρησιμοποίηση αυτής της κατηγορίας φαρμάκων δεν φαίνεται χρήσιμη σε αυτή τη φάση. Βέβαια υπάρχουν άλλοι αναστολείς πρωτεάσης που κατευθύνονται ειδικά προς τις πρωτεάσες του κορωνοϊού, σε αρχικό στάδιο ανάπτυξης.

Η πρωτεΐνες του μηχανισμού αντιγραφής του γονιδιώματος του ιού, που συμπεριλαμβάνει την πρωτεΐνη ελικάση και την πρωτεΐνη  RdRp. Η ελικάση είναι ένας ελκυστικός στόχος, αλλά διαφέρει από ελικάσες άλλων ιών και οι αναστολείς της ελικάσης του ιού του απλού έρπητα (αμεναβίρη και πρετελιβίρη) δεν είναι αποτελεσματικές έναντι των κορωνοϊών. Η πρωτεΐνη RdRp εκτελεί τόσο την αντιγραφή όσο και τη μεταγραφή του RNA του ιού, και αποτελεί  σαφή στόχο για την διακοπή του κύκλου ζωής του ιού. Η RdRp είναι μια κρίσιμη πρωτεΐνη για πολλούς ιούς και υπάρχουν αναστολείς έναντι της RdRp είτε εγκεκριμένοι είτε σε κλινικές δοκιμές. Τέτοια φάρμακα είναι το remdesivir και το favipiravir. Το remdesivir αναπτύχθηκε αρχικά για τη θεραπεία του Ebola και αποδείχθηκε ότι είναι ενεργό έναντι τόσο του SARS-CoV-1 και του MERS-CoV σε ζωικά μοντέλα. Το Favipiravir αναπτύχθηκε για τη γρίπη και εγκρίθηκε στην Ιαπωνία το 2014. Στο εργαστήριο, τόσο το remdesivir όσο και το favipiravir είναι δραστικά έναντι του SARS-CoV-2 σε ανθρώπινα κύτταρα. Το remdesivir έχει προχωρήσει ταχύτατα σε αρκετές κλινικές δοκιμές για το COVID-19 και τα πρώιμα δεδομένα δείχνουν ότι το remdesivir έχει κάποια αποτελεσματικότητα. Περαιτέρω τυχαιοποιημένες, ελεγχόμενες κλινικές δοκιμές με το remdesivir  (και το favipiravir) συνεχίζονται.

Εξετάζονται επίσης ορισμένα άλλα φάρμακα, αν και με λιγότερα στοιχεία. Επιπλέον, χρησιμοποιώντας στρατηγικές του λεγόμενου  φαινοτυπικού ελέγχου γίνεται προσπάθεια εντοπισμού ήδη γνωστών (και ασφαλών) φαρμάκων που μπορεί να είναι δραστικά. Πρόκειται για μια στρατηγική για τον εντοπισμό μορίων με την ικανότητα να αλλάξουν τον φαινότυπο ενός κυττάρου (πως φαίνεται, πως συμπεριφέρεται ή αλλαγές σε κάποιο άλλο χαρακτηριστικό που μπορεί να απεικονιστεί). Έτσι γίνεται μαζικός έλεγχος όπου καταγράφεται αν ο ιός μπορεί τελικά να εισέλθει ή να αντιγραφεί στα κύτταρα κατά την έκθεση σε κάποιο ήδη γνωστό φάρμακο ή χημική ουσία και καταγράφεται με ειδικά συστήματα απεικόνισης πως αλλάζει το κύτταρο όταν έρθει σε επαφή με τον ιό.